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   Group – A 
 

Answer any four questions from Question nos. 1 to 6 :  [4×5] 

 

 

1. For what values of the number r is the function 
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 continuous on 2 ? 

2. (a) Let u be a homogeneous function of x and y of degree n. Then prove that  
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 (b) State Schwarz's theorem. [2] 

 

3.  Suppose that f is a differentiable function of one variable. Show that all the tangent planes to the 

surface  y
z xf

x
 intersect at a common point. [5] 

 

4. (a) For the improper integral 
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  show that Cauchy principal value exist but the integral does not 

exist. [3] 

 (b) Show that    2m 1 2n 12
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5.  If f(x,y,z) = x sin(yz), (a) find the gradient of f and (b) find the directional derivative of f at 

(1,3,0) in the direction of ˆ ˆ ˆv i 2j k.    [5] 

 

6. (a)  If  2 2u f x 2yz, y 2zx   , then prove that  
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 (b) Show that the improper integral 
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 diverges to . [2] 

 

Answer any one question  from Question nos. 7 and 8 : [1×10]    

7. (a) The roots of the equation in  ,      
3 3 3

x y z 0      are u,v,w.  

  Prove that the Jacobian 
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 (b) Use the Lagrange multiplier method to prove that the triangle with maximum area with a given 

perimeter p is equilateral. [5] 
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 (b) Find the range of the values of x for which the function  y = x
4
 - 6x

3
 +12x

2
+5x+7 is concave 

upwards or downwards. Also find the point of inflexion if any. [6] 

 

Answer any one question  from Question nos. 9 and 10 : [1×10] 

    

9. (a) Suppose the Hicksian demand functions of an expenditure-minimizing consumer are given by  

  2
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   [4] 

 (b) Show that an isoquant corresponding to the production function 
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convex, but not strictly-convex. [6] 

 

10. (a) Suppose that the expenditure function of an expenditure-minimizing consumer is given by  
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  Find the Marshallian demand function for commodity 1. [4] 

  

 (b) Consider the production function F(L,K) = Min[2L+3K, L+4K] for L,K  0 ,where L and K are 

the amounts of Labour and Capital respectively. 

  i)  Draw the isoquant for output =10. 

  ii)  Show that the production function exhibits CRS. 

  iii)  Find the cost-minimizing choice of the firm when w = r = 1. 

  iv)  Find the expansion path. [2+1+2+1] 

Group – B 
 

Answer any seven questions from Question Nos. 11 to 21 : [7×5] 

 

11.  Consider the following C-D production function Q = f(K,L) = K

 L


 , + = 1. Suppose L grows 

at a fixed rate i.e. 
dL
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  what is saved is invested and there is no depreciation, so that 
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 be the capital per unit of labour. Calculate the rate of change of k with 

respect to time. Hence construct the fundamental differential equation of the model as, 

k k sk ,  where 
dk

k
dt

 . [5] 

 

12. (a) State Clairaut's form of differential equation of first order and higher degree. What do you mean 

by singular solution of a differential equation? [1+2] 

 (b) Find the singular solution of the differential equation 2 dy
y px p , where p
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(3) 
 

13.  Solve the differential equation 
dy

ax sx
dx
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14. (a) Define integrating factor (I.F.) of a differential equation. [1] 

 (b) Examine whether the equation  
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  is exact or not. Hence solve the equation. [1+3] 
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16.  Solve  
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17.  Find the solution of the initial value problem 2 dy
x xy 1, x 0, y(1) 2
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18.  Using the method of undetermined coefficients, find the general solution of  
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19.  Solve the differential equation 
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20.  Apply the method of variation of parameters to solve the differential equation [5] 
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21.  Transform the single linear differential equation 
3 2

3 4

3 2

d x d x dx
t 2t 5t 0

dt dt dt
     into a set of first 
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